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Simple Summary: The diagnosis of oral cancer can require multiple biopsies to increase the likelihood
of sampling the most pathologic site within a lesion. Optical coherence tomography (OCT) enables the
examination of subsurface morphology and has shown potential in biopsy guidance. OCT captures
changes in tissue stratification related to depth, topology, and presence of the epithelial-stromal
boundary, which are structural biomarkers for pre-invasive and invasive oral cancer. This study
presents a neural network pipeline to simplify OCT interpretation by providing information about
epithelial depth and stratification through simple en face maps. U-net models were employed to
segment the boundaries of the epithelial layer, and supporting convolutional neural networks were
used for identification of the imaging field and artifacts. Non-cancerous, precancerous, and cancerous
pathologies across the oral cavity were evaluated. The predictions demonstrate as-good-as or better
agreement than inter-rater agreement, suggesting strong predictive power.

Abstract: This paper aims to simplify the application of optical coherence tomography (OCT) for the
examination of subsurface morphology in the oral cavity and reduce barriers towards the adoption
of OCT as a biopsy guidance device. The aim of this work was to develop automated software
tools for the simplified analysis of the large volume of data collected during OCT. Imaging and
corresponding histopathology were acquired in-clinic using a wide-field endoscopic OCT system. An
annotated dataset (n = 294 images) from 60 patients (34 male and 26 female) was assembled to train
four unique neural networks. A deep learning pipeline was built using convolutional and modified
u-net models to detect the imaging field of view (network 1), detect artifacts (network 2), identify the
tissue surface (network 3), and identify the presence and location of the epithelial–stromal boundary
(network 4). The area under the curve of the image and artifact detection networks was 1.00 and 0.94,
respectively. The Dice similarity score for the surface and epithelial–stromal boundary segmentation
networks was 0.98 and 0.83, respectively. Deep learning (DL) techniques can identify the location and
variations in the epithelial surface and epithelial–stromal boundary in OCT images of the oral mucosa.
Segmentation results can be synthesized into accessible en face maps to allow easier visualization
of changes.
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1. Introduction

The early detection and diagnosis of cancer improves patient prognosis and the
potential for successful treatment. In the United States, the 5-year survival rate is 86%
for localized head and neck cancers but decreases to 69% for regional cancers and to 40%
for distant metastatic cancers [1]. Unfortunately, only 28% of head and neck cancers are
detected at the localized stage [2]. Screening methods consist primarily of incisional biopsy
and histopathologic examination, which is a burden on both the patient and the healthcare
system. The most common treatment for oral cancer is surgical resection; this procedure
can result in devastating physiological and psychological effects [3–5].

The multi-step progression of healthy oral mucosa through grades of dysplasia to
cancer is very well understood. Dysplastic changes typically originate in the epithelium,
just above the epithelial–stromal boundary [6]. The World Health Organization (WHO)
has identified architectural (presence and degree of epithelial stratification) and cytological
(cellular atypia) changes as key indicators of dysplastic progression [7]. Malignant lesions
are classified by having breached the epithelial–stromal boundary, surpassing the basement
membrane that prevents the spread of cancerous cells into connective tissue, and allowing
for potential metastasis [8]. The most prevalent invasive tumor is oral squamous cell
carcinoma (OSCC), accounting for over 90% of oral tumors [9]. There are several structural
biomarkers for invasive cancer accessible through histological staining, however ensuring
that a biopsy sample contains the most pathologic tissue is difficult. Multiple biopsies are
often taken to reduce false negatives, as the clinical presentation of benign lesions may
appear similar to occult lesions [10].

Optical coherence tomography (OCT) is a volumetric imaging technique that generates
images through reconstruction of backscattered light from a low coherence source. While
the most widespread clinical application of OCT is retinal imaging [11,12], the utility of
OCT as an adjunct screening tool for oral cancer has been previously explored [13–16]. OCT
allows for non-invasive in vivo measurement of epithelial thickness and visualization of
architectural changes relating to stratification and structure within the oral cavity [17–19].
Bridging the resolution-gap between ultrasound and microscopy, OCT has an axial resolu-
tion of ~5–10 µm, providing information at the microstructure level that was previously
only available through biopsy, as morphological features imaged in OCT are strongly
correlated to those observed in histology [20]. The primary limitation of OCT is a shallow
imaging depth, generally collecting data up to 2–3 mm into tissue. Yet, this depth is com-
parable to that of histological data collection, making it an excellent tool for examining
changes to near-surface tissue [21].

The clinical adoption of oral OCT requires data analysis tools that can provide rapid
and reproducible assessment of tissue morphology, as the large volume of data collected
during imaging makes manual assessment intractable. This work proposes applying deep
learning methodologies for automated assessment of OCT data to extract tissue layer strati-
fication. The intersection of deep learning and image analysis has been documented in OCT
applications, with substantial evidence indicating utility in image segmentation [22–26]
and image classification [27–29] tasks. We build upon previously presented classical meth-
ods for the segmentation of oral OCT [30], which were limited in clinical applicability due to
poor generalizability and lengthy processing times. There is a gap in the existing literature
for the image analysis of oral OCT, where no pathology agnostic, site agnostic, rapid, and
repeatable tool exists to identify structures of interest. We posit that this tool should not
provide diagnostic suggestions, but instead empower clinical decision making by providing
additional data through the easily interpreted visualization of subsurface morphology.

2. Materials and Methods
2.1. Imaging System

Images were collected using a custom-built swept-source OCT system. The system,
described previously [15], employes a 1310 ± 50 nm laser (Axsun Technologies, Billerica,
Middlesex County, MA, USA) to achieve ~7 µm axial resolution in tissue. A helical scanning
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pattern is facilitated using a rotary pullback device, which collects images up to 90 mm in
length, thus allowing large tissue sites to be collected in a single scan. A single-mode fiber
delivers light to and collects light from the sample; during in vivo imaging, the optical fiber
is packaged into a 1.5 mm diameter catheter which is filled with water to provide refractive
index matching and reduce friction during rotation. Two catheter sheath holders were
developed to allow imaging of various sites in the oral cavity: a modified dental mirror
and a modified saliva ejector.

Images are acquired in a 3-dimensional cylindrical coordinate system (Figure 1) that
includes radial (z), azimuthal (θ), and pullback (y) axes. Unwrapping the volume along
the azimuthal axis and applying a mean intensity projection along the radial (A-line)
axis creates a 2-dimensional en face projection, shown in Figure 1c. Slicing the volume
perpendicular to the pullback axis, at the purple dashed line, provides the cross-section
shown in Figure 1d. Slicing perpendicular to the azimuthal axis, at the red dashed line,
provides the longitudinal view, shown in Figure 1e. A magnified inset (yellow dashed box)
is shown in Figure 1f. The epithelial surface and epithelial–stromal boundary are identified
by the white dashed lines, highlighting biomarkers of interest for oral cancer visualized
through OCT: epithelial thickening and changes in stratification. Co-registered features can
be seen in the histology slice in Figure 1g, depicting regions of normal and abnormal tissue.
These features can be observed in the longitudinal image but are challenging to identify
in the en face projection. Water-filled catheters sometimes introduce air bubbles into the
optical pathway. Air bubbles can be observed in the en face (Figure 1c, indicated with ‘B’),
longitudinal and cross section views, and may obscure the tissue underneath.
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Figure 1. OCT of lateral tongue with biopsy confirmed OSCC. (a) Helical scanning coordinate sys-
tem illustrating 𝑧 (A-line), 𝜃 (azimuthal, pink to blue color gradient), and 𝑦 (pullback) axes; (b) 
OCT catheter holder based on a modified dental mirror; (c) en face mean intensity projection, 

Figure 1. OCT of lateral tongue with biopsy confirmed OSCC. (a) Helical scanning coordinate system
illustrating z (A-line), θ (azimuthal, pink to blue color gradient), and y (pullback) axes; (b) OCT
catheter holder based on a modified dental mirror; (c) en face mean intensity projection, unwrapped
along pink to blue gradient of (a), with air bubbles marked by B; (d) Cross-sectional view at purple
dashed line in (c,e); (e) Longitudinal view at dashed red line in (c); (f) Inset magnified from yellow
dashed box in (e), highlighting appearance of epithelial and stromal layers in OCT. Epithelial surface
and epithelial–stromal boundary marked by white dashed lines; (g) Histology section with regions of
normal and abnormal stratification, with corresponding regions marked in (c,e). Scale bars 1 mm.
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2.2. Data Collection and Assembly

In vivo imaging of the oral mucosa was approved by the Research Ethics Board of
the University of British Columbia and the British Columbia Cancer Agency (H11-02516).
Images used in this study were collected from 2014 to 2017. The most pathologic site
was identified by an experienced oral medicine specialist (C.P., S.P.-Y.N.) based on clinical
presentation using white light illumination, fluorescence visualization, and toluidine blue.
One to six OCT scans were performed over the lesion (including some tissue before and
after the lesion when possible); a contralateral pullback was also taken when possible.
Toluidine blue was applied after OCT to avoid affecting the OCT signal. If deemed clinically
necessary, a biopsy was performed after image collection to confirm diagnosis, which could
be co-registered to the OCT.

For this study, 187 volumetric scans were selected from 60 patients (34 male and
26 female). The mean age (M) was 62 years (standard deviation, SD = 14.3). Visual analysis
was used to ensure good OCT quality by minimizing the presence of imaging artifacts (≤40%
of image). Scans were required to be ≥30 mm in length, with pullback speeds ≤ 10 mm/s
and azimuthal scan rates of 100 Hz. Each scan contained 504–512 longitudinal images. One
patient was held out of the discovery sets for whole-volume evaluation. Up to three longi-
tudinal images (minimum azimuthal separation of 15◦) were selected from the remaining
scans for annotation. Images included a variety of sites and pathologies to encourage
robustness and generalizability, summarized in Tables 1 and 2.

Table 1. Summary of dataset pathology.

Diagnosis No. Scans % of Dataset No. Longitudinal Images % of Dataset

Contralateral (assumed normal) 59 31.6 133 45.2
Benign (pathology confirmed) 14 7.5 19 6.5

Scar 3 1.6 4 1.4
Trauma 1 0.5 1 0.3

Reactive Fibroma 1 0.5 1 0.3
Actinic Cheilitis 2 1.1 3 1.0

Hyperplasia 2 1.1 2 0.7
Verrucous Hyperplasia 3 1.6 4 1.4

Dysplasia Grade 1 24 12.8 31 10.5
Dysplasia Grade 2 21 11.2 25 8.5
Dysplasia Grade 3 12 6.4 18 6.1
Carcinoma In Situ 5 2.7 7 2.4
Lentigo Maligna 4 2.1 5 1.7

OSCC 27 14.4 32 10.9
Verrucous Carcinoma 9 4.8 9 3.1

Total 187 100.0 294 100.0

Abbreviations: OSCC, oral squamous cell carcinoma.

Table 2. Summary of dataset imaging site.

Site No. Scans % of Dataset No. Longitudinal Images % of Dataset

Buccal Mucosa 23 12.3 38 12.9
Floor Of Mouth 8 4.3 13 4.4

Gingiva 10 5.3 11 3.7
Labial Mucosa 4 2.1 8 2.7

Lower Lip 1 0.5 1 0.3
Tongue—Dorsal 4 2.1 6 2.0
Tongue—Lateral 55 29.4 86 29.3
Tongue—Ventral 76 40.6 124 42.2

Vestibule 6 3.2 7 2.4

Total 187 100.0 294 100.0
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2.3. Rater Annotations

Supervised deep learning models were used in this study, and, thus, the discovery set
required ground truth reference data. Annotations were generated by five raters experi-
enced with analyzing OCT. Manual segmentation of the (1) epithelial surface, (2) epithelial-
stromal boundary, and (3) imaging artifacts was completed using in-house annotation
software. Artifacts such as air bubbles cause a decrease or complete loss of image intensity
and may confound other processing steps. Each image was annotated by three randomly
assigned raters. Data was anonymized prior to distribution, blinding raters to identifiers
and disease status. A single rater combined these impressions to generate a single reference
annotation for each image. Images with high inter-rater disagreement were discussed and
a consensus annotation was created in a panel review session.

2.4. Pipeline Architecture

A three-step automated pipeline was built to pre-process the volumetric scans, generate
predictions via four deep learning networks, post-process the predictions, and synthesize
them for visual analysis. The second step of the pipeline employed the following networks:

1. Field-of-view (FOV) detection. A convolutional neural network (CNN) was used to
predict either complete tissue contact or partial/no tissue contact for each longitudi-
nal image.

2. Artifact detection. A CNN was used to classify any regions that contained artifacts
(bubbles, sheath markers) that might lead to incorrect segmentation predictions.

3. Surface segmentation. A shallow u-net was used to segment the (epithelial) tissue surface.
4. Epithelial–stromal boundary segmentation. A shallow u-net was used to segment the

epithelial–stromal boundary.

Post-processing steps are unique to the individual tasks and described below. Pre-
dictions are presented as thickness maps which provide information about changes to
epithelial thickening, stratification, and the presence of imaging artifacts. Pre- and post-
processing methods were completed in MATLAB R2021a. Networks were implemented
with PyTorch framework using NVIDIA Cuda v11.4 and Python 3.6.9. All experiments
were performed on a Windows 10 operating system, with CPU Intel Core i7-4770 3.40 GHz,
GPU NVIDIA GeForce GTX 1660, and 32 GB of RAM.

2.5. Data Preparation and Augmentation

Longitudinal images were averaged in the azimuthal direction (out of plane, 5-pixel
average) and resampled for isotropic pixel size (10 µm square in tissue). After resampling,
images were 382 pixels (3.82 mm) high and 4000 pixels (4 cm) to 9000 pixels (9 cm) wide,
depending on the pullback length. The logarithmic intensity (dB) of each image was
scaled between the OCT noise floor and the maximum intensity of the image. Images
were partitioned into overlapping square tiles to create uniform, memory-aware input
information for model training.

The discovery sets are summarized in Table 3. As the classification task required less
contextual information, classification tiles were smaller (128 × 128) to allow faster training.
Conversely, segmentation tiles were selected to be the maximum base-2 size (256 × 256)
without resampling. The deepest 126 pixels contained no relevant information due to signal
attenuation and were discarded from each image. Tiles were overlapped (by half their
width) to encourage attention at both the left and right side of the image and increase the
amount of data available for training.

In the FOV detection task, longitudinal images were randomly selected from a subset
of 9 volumetric scans. Images with no tissue present (no probe-tissue contact) were defined
as class 0 while those with tissue present (probe-tissue contact over the entire width
of the image) were defined as class 1. Images with partial tissue contact were rejected.
Similarly, for the artifact detection task, images with no artifacts were defined as class 0
while those with artifacts were defined as class 1. Training, tuning, and test images for
this task were selected from the pool of annotated images. Tiles with small artifacts (<30%
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of the tile) occurring at the edge of the tile were discarded. Segmentation tasks also used
annotated images for training, with annotations being converted to ground truth masks.
Prior to tiling, images were cropped to remove any regions that did not have an epithelial
surface annotation.

Table 3. Summary of discovery sets for deep learning tasks.

Task Model No. Patients No. Scans No. Images No. Tiles Tile Size (Overlap)
[pixels]

FOV
Detection Classification 9 9 2427 Class 0: 64,250

Class 1: 87,376 256 × 256 (128)

Artifact
Detection Classification 59 864 288 Class 0: 20,467

Class 1: 1459 128 × 128 (64)

Epithelial
Surface Segmentation 59 864 288 11,356 256 × 256 (128)

Epithelial–Stromal
Boundary Segmentation 59 864 288 11,356 256 × 256 (128)

Abbreviations: FOV, field of view.

2.6. Convolutional Neural Network Architectures

A custom CNN was trained for tile classification in the FOV and artifact detection tasks.
Shown in Figure 2a, the feature detection layers of the FOV detection network comprised
two convolutional layers with ReLU activation and 2 × 2 max pooling. The network was
terminated with two dense layers with ReLU activation, and a sigmoid classification layer.
Shown in Figure 2b, the artifact detection network followed similar topology but comprised
four convolutional layers with ReLU activation and 2 × 2 max pooling.
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Figure 2. CNN architecture network topology for (a) FOV detection task; (b) artifact detection task.
Arrows represent layer operations (defined bottom right); grey boxes represent feature maps, labelled
with number of feature maps (above) and image dimension (left).

2.7. U-Net Architectures

Modified u-nets [31] were implemented to identify the epithelial surface and epithelial–
stromal boundary. The epithelial surface task used a shallow u-net (encoder: 4 convolu-
tional layers, 3 × 3 kernel, ReLU activation, 2 × 2 max pooling; decoder: 3 convolutional
layers, 3 × 3 kernel, ReLU activation, 2 × 2 transposed convolution layers). Shown in
Figure 3, the epithelial–stromal boundary task used the same u-net topology with an ad-
ditional connection, used during training only, concatenating the prediction of the prior
epoch to the input of the subsequent epoch.
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Figure 3. Segmentation u-net topology shown for segmentation tasks. Arrows denote layer operations
and grey boxes denote feature maps. Number of feature maps (top) and image dimension (left) are
labelled. White boxes are copied feature maps of corresponding blue-outline boxes. Magenta arrow
(top) is included in epithelial–stromal boundary architecture only.

2.8. Model Training

For each task, the discovery set was divided into training, tuning, and test cohorts with
approximately 70%, 15%, 15% distribution, ensuring no patient overlap between intra-task
cohorts. Stratified sampling was used to promote uniform representation of features of
interest across the cohorts. The distribution of features by deep learning task is summarized
in Table 4. The epithelial surface task did not have a feature of interest; cohort distribution
matched the epithelial–stromal boundary task.

Table 4. Distribution of features by deep learning task.

Task Feature of Interest Distribution

FOV Detection Tissue Contact In FOV: ~60%
Out of FOV: ~40%

Artifact Detection Presence of Artifact Present: 7%
Absent: 93%

Epithelial Surface N/A N/A

Epithelial-Stromal Boundary Tissue Stratification
Complete: ~70%

Broken: ~15%
Absent: ~15%

Abbreviations: FOV, field of view. N/A, not applicable.

To reduce imbalanced mask content during segmentation tasks, reference annotations
were thickened in the vertical (z or A-Line) direction. Various training protocols were
explored, evaluating the utility of thickening the segmentation masks. For the epithelial
surface task, three models were compared, trained with ±24 pixel masks, ±12 pixel masks,
and ±4 pixel masks. The epithelial–stromal boundary task also explored thickened training
masks, and analyzed pre-training with coarser masks, and fine-tuning with more precise
masks. Figure 4a depicts a raw epithelial surface reference tile overlaid on the image tile.
Figure 4b details the training reference tile after thickening (displayed with transparency to
allow visualization of the image tile).
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2.9. Post-Processing

The FOV detection task class predictions were aggregated by original image. To reduce
errors arising from incorrect prediction due to imaging artifacts, poor catheter contact, or
off-target structures (e.g., gloved hand touching the catheter, mucus), >90% of the image
tiles in each longitudinal image were required to be classified as containing tissue (class 1)
to continue to subsequent networks. Examples of longitudinal images pulled from the
center (approved, blue) and the edge (rejected, red) of the FOV is shown in Figure 5a.

Post-processing steps for segmentation tasks were developed using model predic-
tions of the test cohort. Steps from the epithelial–stromal boundary task are summarized
graphically in Figure 5b, with the final step in magenta, and the reference in green. In both
tasks, the raw predictions approximately matched the thickness of the training reference
masks. A single pixel thick boundary was created by extracting the median A-Line depth
(z-direction) of each tile. Neighboring tiles were then stitched and overlapping regions
were averaged.

For the epithelial surface task, simple morphological operations eliminated small
(<10 pixels) regions and subsequently connected any gaps between predictions. Boundaries
were smoothed by resampling at every 10th pixel and reconnecting using the p-chip
algorithm [32], as shown in Figure 5.
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In the epithelial–stromal boundary task, morphological operations were used to
(1) connect small gaps (<10 pixels along the pullback (y) axis) through linear interpolation,
(2) remove small predictions (<25 pixels), (3) connect small gaps (<30 pixels along the
pullback axis) through linear interpolation, and (4) smooth predictions through resampling
and interpolation with the p-chip algorithm. In steps (1) and (3), regions that were within
the pullback-axis limits, but were more than 10-pixels apart along the A-Line depth, were
not connected, to best represent the biological organization of oral tissue.

The artifact detection task post-processing steps are summarized in Figure 5c, with
class 1 tiles outlined in cyan, and class 0 tiles outlined in black. Classified tiles were
stitched into longitudinal images and overlapping tile regions were classified using logical
conjunction (i.e., AND), allowing artifact localization within a 64-pixel resolution.

2.10. Evaluation Metrics

All metrics were calculated from the test cohort of the discovery set. Balanced accuracy,
sensitivity, and specificity are reported for classification tasks, as well as for the receiver
operating characteristic (ROC) curve and the precision recall (PR) curve. The area under
the ROC curve (AUC) and mean average precision (mAP) are also presented.

For segmentation tasks, the dice similarity coefficient (DSC), percent of positive agree-
ment (PA), percent of negative agreement (NA), and mean A-line error (ME) are reported.
The dice similarity score [33],

DSC =
2|Reference ∩ Prediction|
|Reference|+ |Prediction| , (1)
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is included for comparability to other segmentation tools; however, this metric demon-
strates a bias towards larger objects. Error in comparing small shapes (such as a thin
boundaries) is amplified in the DSC, as the small positive sample size is greatly outweighed
by the overall sample size (pixel count). Conversely, large shapes may exhibit high DSC
despite containing numerous pixels that have been inaccurately segmented [34].

To accommodate this limitation, we also calculate percent of positive and nega-
tive agreement,

PA =
2TP

2TP + FP + FN
, NA =

2TN
2TN + FP + FN

(2)

to represent agreement about boundary existence within each A-line; these metrics are only
calculated for the epithelial–stromal boundary task as the epithelial surface post-processing
methods guarantee the presence of a boundary. PA and NA are calculated by comparing
the annotations for each A-line per tile. For this application, true positive (TP) is defined by
boundary presence in the reference and prediction, and true negative (TN) is defined by
boundary absence in the reference and prediction. False positive (FP) and false negative
(FN) are counted, with the reference used as the ground truth. The ME metric is used to
quantify positional (depth) disagreement in each A-line position between predicted versus
reference masks; a positive value indicates the prediction is shallower than the reference,
while a negative value indicates the opposite. Regions used to calculate PA and NA are
shown graphically in Figure 6a. The blue dashed box in Figure 6b demonstrates A-line
depth errors used to calculate the ME. Per-image metrics are presented as a single value
averaged from all test set predictions.
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Figure 6. Segmentation metrics. (a) Regions of TP, TN, FP, and FN used to calculate PA and NA;
(b) regions of depth disagreement used to calculate ME, enhanced from blue dashed box in (a).

2.11. 3-Dimensional Volumes

Two scans from the excluded patient in the discovery set were analyzed: a grade
2 dysplasia of the lateral tongue, and its contralateral. A total of 504 longitudinal images
were generated from each pullback. Each longitudinal image was pre-processed, passed
through the four-network pipeline, and post-processed. Predictions were combined to
reconstruct a 3-dimensional volume detailing the epithelial layer and imaging artifact.
Epithelial thickness maps are corrected for the refractive index of water (n = 1.33), which
closely matches that of tissue. A small Gaussian blur was applied to the epithelial thickness
maps (10 × 10 pixel kernel) and artifact identification map (5 × 5 pixel kernel) to smooth
the edges. Qualitative evaluation is used in the en face view, as manual annotation of
complete volumes was not practical.

3. Results
3.1. Final Models

For each model, z-score normalization was applied to the discovery set, calculated from
the mean and standard deviation of the training cohort. Model weights were initialized per
the Kaiming He method [35]. Data augmentation of horizontal flips (50% likelihood) and
y-axis shifting (± 10%) was applied to the training cohort. Binary cross entropy [36] and
Adam [37] were used as the criterion and optimization functions. Summarized in Table 5, the
hyperparameters unique to each task were determined through iterative experimentation.
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Table 5. Training hyperparameters for model development.

Task No. of Epochs
(Early Stopping Epoch)

Early Stopping
Scheme Batch Size LR Scheduler

FOV Detection 10
(2)

patience = 5,
∆min = 0.01

mode = min. loss
64

patience = 3,
factor = 0.1,

min. LR = 1 × 10−8

Epithelial Surface 30
(19)

patience = 5,
∆min = 0.01

mode = min. loss
8

patience = 5,
factor = 0.1,

min. LR = 1 × 10−8

Epithelial–Stromal
Boundary

20
(9, 8) *

patience = 5,
∆min = 0.01

mode = min. loss
8

patience = 5,
factor = 0.1,

min. LR = 1 × 10−8

Artifact Detection 30
(18)

patience = 5,
∆min = 0.01

mode = min. loss
64

patience = 3,
factor = 0.1,

min. LR = 1 × 10−7

* Number of epochs for pre-training and fine-tuning. Abbreviations: LR, learning rate; FOV, field of view.

3.2. Convolutional Neural Networks Performance

Classification metrics for the FOV and artifact detection models are reported in Table 6;
ROC and PR curves are presented in Figure 7, demonstrating improvement over an un-
skilled model. Evaluation metrics, ROC, and PR curves are calculated from the test set for
the respective task.
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Table 6. Test Set Metrics for FOV and Artifact Detection CNNs.

Task No. Tiles Bal. Accuracy
(%)

Sensitivity
(%)

Specificity
(%) AUC mAP

FOV
Detection 17,404 100.0 * 100.0 * 100.0 * 1.00 1.00

Artifact
Detection 2345 75.5 99.1 52.3 0.94 0.68

* After aggregating tiles. Abbreviations: FOV, field of view; AUC, area under the curve; mAP, mean average precision.

3.3. U-Net Performance

Segmentation metrics are calculated on stitched, post-processed predictions from the
test set. DSC values are calculated after thickening the reference and prediction masks;
remaining metrics are calculated on the single pixel boundary.

Three training protocols were evaluated for the epithelial surface segmentation task,
exploring the benefit of thickened training masks. The results are detailed in Table 7. With
the metrics being nearly equivalent, and acknowledging the bias of the DSC towards larger
objects, selection of the smallest pixel error mean and standard deviation indicated the
model trained with annotations thickened by ± 12 pixels as superior.

Table 7. Test set metrics for epithelial surface training protocols. Best results marked in bold.

Training Protocol DSC ME (µm) (M ± SD)

±24 pixels 0.99 0.4 ± 9.9
±12 pixels * 0.98 0.4± 9.1
±4 pixels 0.94 −0.9 ± 10.4

* Selected training protocol. Abbreviations: DSC, dice similarity coefficient; ME, mean A-line error; M, mean; SD,
standard deviation.

We also explored the effects of thickening the training masks in the epithelial–stromal
boundary task, but also analyzed pre-training with coarser masks, and fine-tuning with
more precise masks. The results are summarized in Table 8. The affinity of the DSC towards
larger objects is again observed. Yet, this protocol performed poorly in other metrics. While
protocol 2 presents superior ME metrics, this simpler protocol suffered from the lowest PA
and NA values, indicating poor representation of epithelial–stromal boundary detection.
Protocol 3 yielded the highest DSC among comparable models, and the highest PA and NA
values, indicating the best agreement with regions both with and without an identifiable
visible epithelial–stromal boundary. The remaining metrics are similar in protocols 3–5.

Table 8. Test set metrics for epithelial–stromal boundary training protocols. The best results
are bolded.

Training Protocol DSC PA (%) NA (%) ME (µm) (M ± SD)

1. ±12 pixels 0.91 95.8 80.9 2.9 ± 21.5

2. ±4 pixels
0.76 93.1 75.1 0.1 ± 16.2

3. ±12 → ±4 pixels *
0.83 95.8 81.7 −0.5 ± 19.3

4. ±24 → ±4 pixels
0.76 95.1 80.1 1.5 ± 20.3

5. ±24 → ±12 → ±4 pixels 0.79 95.3 81.2 −0.1± 19.8

* Selected training protocol. Abbreviations: DSC, dice similarity coefficient; PA, positive agreement; NA, negative
agreement; ME, mean A-line error; M, mean; SD, standard deviation.

Representative images from patients within the segmentation test set are presented
below; images are taken from apparent normal (contralateral, Figure 8) and pathologic
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(biopsy confirmed OSCC, Figure 9) scans of the ventral tongue. Whole images are presented
in Figure 8a/Figure 9a, magnified insets are presented unannotated in Figure 8b/Figure 9b,
and annotated in Figure 8c/Figure 9c. The results from the surface segmentation u-net and
epithelial–stromal boundary segmentation u-net are included. Reference and prediction
annotations are shown in green and magenta, respectively; regions of agreement are
highlighted in white. Good agreement between epithelial boundaries can be visualized
in the contralateral image (Figure 8). Folds in the tissue surface, which were infrequent
in the training set, are shown to confound the surface segmentation model—marked by
a white star in Figure 9c. The complete loss of epithelial stratification characteristic of
OSCC is captured by the epithelial–stromal boundary segmentation model, an example of
a correctly classified true negative region.
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Figure 8. Contralateral ventral tongue. (a) Image with reference (green) and prediction (magenta)
annotations; white annotations indicate overlap; (b) Magnified region of red dashed box in (a);
(c) With annotation overlay (bolded for visualization). Scale bars 1 mm.

Cancers 2024, 16, x FOR PEER REVIEW 14 of 21 
 

 

 

  
Figure 9. OSCC of the ventral tongue. (a) Image with reference (green) and prediction (magenta) 
annotations; white annotations indicate overlap; (b) Magnified region of red dashed box in (a); (c) 
With annotation overlay (bolded for visualization), white star indicates region of tissue fold con-
founding the network. Scale bars 1 mm. 

To validate the success of our models, we present our evaluation metrics calculated 
against the reference annotations, shown in Table 9. Segmentation is a laborious and sub-
jective task, resulting in human raters being prone to error or differences of opinion re-
garding the boundary location. Model success may be indicated if the reference-prediction 
metrics are within the distribution of inter-rater metrics.  

Table 9. Rater-reference metrics for segmentation networks. 

Task Metric Model Rater 1  Rater 2  Rater 3 Rater 4 Rater 5  

Epithelium DSC 0.98 0.96 0.96 0.97 0.97 0.95 
ME (µm) 0.4 ± 9.1 5.4 ± 11.4  2.1 ± 11.2 2.4 ± 11.1 3.6 ± 10.7 7.2 ± 13.5 

Epithelial–
Stromal 

Boundary 

DSC 0.83 0.78 0.64 0.75 0.75 0.73 
PA (%) 95.8 97.2 89.2 95.1 95.4 87.9 
NA (%) 81.7 85.3 69.1 67.9 74.0 56.8 

ME (µm) −0.5 ± 19.3 0.6 ± 24.2 2.9 ± 32.8 −3.8 ± 24.8 −1.7 ± 18.5 −0.5 ± 14.7 
Abbreviations: DSC, dice similarity coefficient; ME, mean A-line error; PA, positive agreement; NA, 
negative agreement. 

3.4. Evaluation of 3-Dimensional Volumes  
Synthesis of the 3-dimensional prediction data volumes are shown for the contrala-

teral volume (Figure 10) and the dysplastic volume (Figure 11). For each volume, a mask 
highlighting imaging artifacts is included in Figure 10a/Figure 11a, and in Figure 10b/Fig-
ure 11b, an epithelial thickness map, identifying regions of broken or missing epithelial–
stromal boundary. Epithelial thickening is demonstrated with the MATLB parula color-
map, with darker blue regions indicating thinner epithelium, and yellow regions indicat-
ing thickened epithelium. In Figure 10c/Figure 11c, an unannotated en face is included for 
reference with a red dashed line indicating location of a sample longitudinal image. This 
image is shown annotated in Figure 10d/Figure 11d with epithelial layer prediction (ma-
genta) and artifact locations (cyan, Figure 11d only). Insets of Figure 10d (blue dashed 
box) are shown in Figure 10e,f. Insets of Figure 11d (yellow and blue dashed boxes) are 
included in Figure 11e–h. Annotated panels include a green line identifying rater segmen-
tation for dysplastic insets.  

Both volumes demonstrated accurate localization of the imaging artifacts shown in 
Figure 10a/Figure 11a, as well as good identification of the FOV, seen in Figure 10b/Figure 
11b. Evaluation of the contralateral volume (Figure 10) displays near uniform epithelial 
thickness in Figure 10b, aligning with the expected biology of the tissue. Precise segmen-
tation of the epithelial surface and epithelial-stromal boundary is observed, supported by 
isolating a single longitudinal image in Figure 10d, with insets in Figure 10e–f demon-
strating accurate epithelial layer identification. Comparatively, evaluation of the dysplas-
tic volume (Figure 11) demonstrates epithelial thickening and loss of the epithelial-stro-
mal boundary characteristic to oral dysplasia in Figure 11b. From the left, the map 

Figure 9. OSCC of the ventral tongue. (a) Image with reference (green) and prediction (magenta)
annotations; white annotations indicate overlap; (b) Magnified region of red dashed box in (a);
(c) With annotation overlay (bolded for visualization), white star indicates region of tissue fold
confounding the network. Scale bars 1 mm.

To validate the success of our models, we present our evaluation metrics calculated
against the reference annotations, shown in Table 9. Segmentation is a laborious and
subjective task, resulting in human raters being prone to error or differences of opinion
regarding the boundary location. Model success may be indicated if the reference-prediction
metrics are within the distribution of inter-rater metrics.

Table 9. Rater-reference metrics for segmentation networks.

Task Metric Model Rater 1 Rater 2 Rater 3 Rater 4 Rater 5

Epithelium DSC 0.98 0.96 0.96 0.97 0.97 0.95
ME (µm) 0.4 ± 9.1 5.4 ± 11.4 2.1 ± 11.2 2.4 ± 11.1 3.6 ± 10.7 7.2 ± 13.5

Epithelial–
Stromal

Boundary

DSC 0.83 0.78 0.64 0.75 0.75 0.73
PA (%) 95.8 97.2 89.2 95.1 95.4 87.9
NA (%) 81.7 85.3 69.1 67.9 74.0 56.8

ME (µm) −0.5 ± 19.3 0.6 ± 24.2 2.9 ± 32.8 −3.8 ± 24.8 −1.7 ± 18.5 −0.5 ± 14.7

Abbreviations: DSC, dice similarity coefficient; ME, mean A-line error; PA, positive agreement; NA, negative agreement.
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3.4. Evaluation of 3-Dimensional Volumes

Synthesis of the 3-dimensional prediction data volumes are shown for the contralateral
volume (Figure 10) and the dysplastic volume (Figure 11). For each volume, a mask high-
lighting imaging artifacts is included in Figure 10a/Figure 11a, and in Figure 10b/Figure 11b,
an epithelial thickness map, identifying regions of broken or missing epithelial–stromal
boundary. Epithelial thickening is demonstrated with the MATLB parula colormap, with
darker blue regions indicating thinner epithelium, and yellow regions indicating thickened
epithelium. In Figure 10c/Figure 11c, an unannotated en face is included for reference
with a red dashed line indicating location of a sample longitudinal image. This image
is shown annotated in Figure 10d/Figure 11d with epithelial layer prediction (magenta)
and artifact locations (cyan, Figure 11d only). Insets of Figure 10d (blue dashed box) are
shown in Figure 10e,f. Insets of Figure 11d (yellow and blue dashed boxes) are included
in Figure 11e–h. Annotated panels include a green line identifying rater segmentation for
dysplastic insets.

Cancers 2024, 16, x FOR PEER REVIEW 15 of 21 
 

 

indicates a slow thickening of the epithelial layer, while the right indicates a sharp transi-
tion from stratified into non-stratified tissue. Isolation of a longitudinal image shown in 
Figure 11d, pulled from the center of the imaging FOV, allows easier visualization of this 
phenomena. While inconsistencies in the segmentation of the epithelial–stromal boundary 
are present, with errors highlighted by rater segmentation (green line) in Figure 11f,h, the 
general trend of abnormal tissue towards the center of the tissue, compared to the more 
normal stratification tissue towards the image edges, is captured.  

 
Figure 10. Contralateral pullback of the lateral tongue. (a) En face projection with artifact overlay; 
(b) En face projection with epithelial thickness map. Color bar indicates 0 to 1.04 mm thickness, with 
bright red indicating no visible epithelial-stromal boundary; (c) Unannotated en face projection with 
red dashed line indicating location of longitudinal image in (d); (d) Longitudinal image with pre-
dicted epithelial layer overlay (magenta); (e) Inset of blue dashed box in (d), unannotated; (f) Inset 
of blue dashed box in (d), mirroring inset of (e) with annotation. Scale bars 1 mm. 

Figure 10. Contralateral pullback of the lateral tongue. (a) En face projection with artifact overlay;
(b) En face projection with epithelial thickness map. Color bar indicates 0 to 1.04 mm thickness,
with bright red indicating no visible epithelial-stromal boundary; (c) Unannotated en face projection
with red dashed line indicating location of longitudinal image in (d); (d) Longitudinal image with
predicted epithelial layer overlay (magenta); (e) Inset of blue dashed box in (d), unannotated; (f) Inset
of blue dashed box in (d), mirroring inset of (e) with annotation. Scale bars 1 mm.

Both volumes demonstrated accurate localization of the imaging artifacts shown in
Figure 10a/Figure 11a, as well as good identification of the FOV, seen in Figure 10b/Figure 11b.
Evaluation of the contralateral volume (Figure 10) displays near uniform epithelial thickness
in Figure 10b, aligning with the expected biology of the tissue. Precise segmentation of
the epithelial surface and epithelial-stromal boundary is observed, supported by isolating
a single longitudinal image in Figure 10d, with insets in Figure 10e–f demonstrating
accurate epithelial layer identification. Comparatively, evaluation of the dysplastic volume
(Figure 11) demonstrates epithelial thickening and loss of the epithelial-stromal boundary
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characteristic to oral dysplasia in Figure 11b. From the left, the map indicates a slow
thickening of the epithelial layer, while the right indicates a sharp transition from stratified
into non-stratified tissue. Isolation of a longitudinal image shown in Figure 11d, pulled
from the center of the imaging FOV, allows easier visualization of this phenomena. While
inconsistencies in the segmentation of the epithelial–stromal boundary are present, with
errors highlighted by rater segmentation (green line) in Figure 11f,h, the general trend of
abnormal tissue towards the center of the tissue, compared to the more normal stratification
tissue towards the image edges, is captured.
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Figure 11. Grade 2 dysplasia of the lateral tongue. (a) En face projection with artifact overlay (cyan);
(b) En face projection with epithelial thickness map. Blue to yellow color bar indicates 0 to 1.04 mm
thickness, with red indicating no visible epithelial–stromal boundary. White dashed lines flank
predicted region of epithelial thickening and loss, also seen in (c,d); (c) nannotated en face projection
with red dashed line indicating location of longitudinal image in (d); (d) Longitudinal image with
predicted epithelial layer overlay (magenta) and identified artifact overlay (cyan); (e) Inset of yellow
dashed box in (d), unannotated; (f) Inset of yellow dashed box in (d) mirroring inset of (e) with
annotation, green line indicating rater segmentation; (g) Inset of blue dashed box in (d), unannotated;
(h) Inset of blue dashed box in (d), mirroring inset of (h) with annotation, green line indicating rater
segmentation. Scale bars 1 mm.

4. Discussion

We present a novel pipeline for the automated segmentation of oral OCT, using deep
learning and image processing methods to provide repeatable, time-sensitive information
about epithelial status. Our approach is unique as it employs segmentation strategies
to characterize the epithelial layer, rather than to classify disease status. This contrasts
with prior in vivo oral OCT studies, which were used to triage healthy, pre-cancerous, and
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cancerous samples [16,38,39] or to classify states of dysplasia [38]. While these methods
achieved high agreement, they are constrained by rigid classification labels, and either
have limited transparency in the diagnostic process or employ explainability methods
to foster physician trust. Instead, we propose a tool to retrieve oral cancer biomarkers
and empower clinicians with morphological information upon which to make treatment
plan recommendations.

The processing pipeline employed four independent deep learning networks, pre-
venting the propagation of errors through the analysis pipeline, while simplifying the
adaptation (domain-transfer) of these networks to other datasets (lung or cervical OCT, for
example). Further investigation into generalizability across oral cavity sites is warranted,
where changes in imaging site and pathology may influence network predictions. The
networks presented in this research are unavoidably biased towards the more prevalent
presentation of oral cancer of the tongue, comprising 71.7% of our data. Whereas the
presentation of the epithelial surface (tissue surface) is consistent across imaging site and
pathology, the site imbalance in training data may influence network predictions of the
epithelial–stromal boundary in sites other than the tongue.

4.1. Convolutional Neural Networks

Training data for the FOV classification task excluded images near the tissue–air tran-
sition, as inconsistent contact required the manual labelling of tiles. However, this step
of the pipeline is designed to discard entire longitudinal images, and misclassification of
individual tiles is mostly managed through averaging during post-processing. Current
methods may be too lenient at the edges of tissue contact, for example, at the upper border
of Figure 10b. While these images contain oral tissue, the lack of a visible epithelial–stromal
boundary is likely not attributed to epithelial thickening, but rather a result of the incident
angle of the scanning beam approaching perpendicular to the tissue surface. Consequen-
tially, these images proceed to segmentation steps and are either predicted with thickened
epithelium, or marked as N/A. Another potential limitation of this approach includes
an intolerance for scans experiencing non-uniform rotational distortion, an occasional
artifact due to the helical scanning endoscopic OCT system [40]. However, this effect occurs
primarily when the imaging catheter movement is restricted during collection, which is
rare when collecting oral OCT due to the accessibility of the site of interest.

Training data for the artifact classification task excluded image tiles that featured
small, borderline artifacts. Potential errors arising from under-representing this type of
image are accommodated through overlapping tiles. Stitching tiles using logical con-
junction allows for more focal identification of the regions of artifact. However, as ob-
served in Figures 10a and 11a, applying classification labels to whole tiles results in over-
identification of artifact regions; a better suited method may be segmentation of the en
face projection. If the artifacts of most concern are air bubbles, en face projections could be
examined over a reduced A-Line depth to readily identify the sheath and holder region.
This would reduce pre-processing time.

4.2. U-Nets

U-net models were trained on thickened masks to reduce class imbalance. Size bias is
apparent in the DSC metrics of the thicker training masks, yet limitations of these training
protocols can be observed in the other metrics. Selection of the ±12 pixel thick mask for the
epithelial surface task allowed the necessary precision to avoid basing predictions on the
imaging core artifacts, but provided sufficient spatial information that remained useable
at the lowest levels of the network. For the more complex epithelial–stromal boundary
segmentation task, fine-tuning with thinner masks generated improvements in protocols 3
and 5. This difference may be attributed to the more challenging task, or the adaptation
of the network topology, where the input layer contained both the input image tile, and
the prediction of the previous epoch. Training protocol 3 exhibited the best response to
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post-processing methods, despite the algorithm being developed using the predictions of
protocol 5.

The uniqueness of this approach limits its comparability with prior studies as, to our
knowledge, no other deep learning segmentation applications have been applied to oral
OCT. Evaluation metrics calculated against the reference annotations were presented in
Table 9. Comparison of these results to reference prediction metrics for the epithelial surface
task and the epithelial–stromal boundary task demonstrates that deep learning methods
offer an improvement over manual annotation metric. The A-Line resolution of these
images is 10 µm; thus, errors beyond this resolution indicate high agreement. Some poor
inter-rater agreement may be attributed to labelling errors rather than misidentification of
the surface of interest: this type of error supports the motivation for automated methods.

Challenges identified in the epithelial surface segmentation task include a limited selec-
tion of images containing unique features: longitudinal images where unknown materials
occlude the image (n = 3) and tissue folds occurring in softer mucosal membranes (n = 2).
An example of this can be seen in Figure 9c, denoted by a white star. Generally, models
struggled to decipher irregular substances (e.g., mucous, keratinization) or structures (e.g.,
tissue folds and gaps) resulting in incorrect predictions. This error may be addressable
with increased sample size including more cases in the training data.

It is evident that segmentation of the epithelial–stromal boundary is a more complex
task for both manual and automated methods, in comparison to the epithelial surface
task. The loss of stratification characteristic of cancerous and pre-cancerous oral lesions
is difficult to quantify using manual annotations, and some cases required the raters to
use contextual information present in the entire longitudinal slice. Accordingly, the image
tiling step introduces a network limitation as this context is lost.

4.3. Comparison of Predictions for Contralateral and Dysplastic OCT Volumes

The distinction between epithelial and stromal layers in the contralateral volume
is well captured by model predictions, which is particularly clear in the longitudinal
image shown in Figure 10d, with inset comparisons in (e) and (f). The epithelial–stromal
boundary was segmented for 91.5% of the in-FOV tissue, with the missing 8.5% occurring
at the tissue edges. The average predicted epithelial thickness is 208 µm, in agreement
with prior research measuring the epithelial thickness of the lateral tongue using OCT
(216 ± 59 µm) [41].

Conversely, the delineation between the epithelial and stromal layers becomes more
nuanced in the dysplastic case, shown in Figure 11, particularly in the region of epithelial
thickening indicated by white dashed lines in (b)–(d). The transition across the layers
becomes less sharp and, while normal tissue morphology dictates the epithelial–stromal
boundary, is visible across the entire image; the network delivers a discontinuous prediction.
We hypothesize a few scenarios that result in incorrect model predictions. As discussed
above, the loss of contextual information restricts available data upon which to make
segmentation predictions. Moreover, as the epithelial layer thickens, the transitionary zone
moves lower in the longitudinal image and approaches the maximum imaging depth of our
system. At this depth, the signal-to-noise ratio decreases as the light attenuates towards
the level of the noise floor, and the transition between the two layers is more difficult to
delineate. In cases with extreme epithelial thickening, the epithelial-stromal boundary
cannot be visualized at all. Finally, as oral tissue transitions through pre- and potentially
malignant lesions towards cancer, changes in cell size, content, and organization alters
the scattering properties [42] of the tissue and OCT images become more homogeneous
in appearance, further complicating the epithelial–stromal boundary segmentation task.
Continued development of complex architectures may improve such errors. Currently, the
epithelial–stromal boundary was segmented for 68.7% of the in-FOV tissue and the average
predicted epithelial thickness is 319 µm. Both the loss of visible stratification and increased
epithelial thickness agree with the expected changes arising in dysplastic tissue.
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This work highlights the opportunity for automated depth analysis of OCT data,
wherein differences in tissue content are non-obvious in the en face view, and the quantity
of longitudinal images renders manual assessment unmanageable. Additionally, presenting
a depth of information in the en face view allows for qualitative image interpretation. We
acknowledge this study is limited by the relatively small number of patients (N = 60) and
scans (N = 187) that were considered.

5. Conclusions

A novel deep learning pipeline is presented as a tool to detect and quantify the
presence and depth of the epithelial layer in OCT images, potentially decreasing barriers
towards clinical applications of oral OCT. Defining the tissue analysis task to be completed
through segmentation allows for a more generalized approach, one not restricted by specific
oral sites and diseases. Built with two CNNs, for FOV and artifact detection, and two
modified u-nets, for epithelial layer isolation, this pipeline provides fast and reproducible
results. The comparison of inter-rater agreement to network predictions demonstrates
as-good-as or better agreement, and the evaluation of whole OCT volumes of exemplifies
the ability to identify pathological progression.

Automated tools like the one presented here, for epithelial segmentation and detection
of abnormal tissue stratification (loss of the epithelial–stromal boundary), will enable the
future development of tools that quantify epithelial features like thickness, attenuation
coefficient, and interdigitation of the epithelium and stroma. Robust quantification of
these features may offer the potential for automated monitoring of pre- and potentially
malignant oral lesions, guiding biopsy site selection, to reduce false negative biopsies, and
intra-operative margin assessment during tumor resection procedures.
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