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Simple Summary: Lung cancer is Canada’s leading cause of cancer deaths, with most cases
diagnosed at advanced stages where treatment hinges on target mutations. While upfront
immunotherapy single pembrolizumab is standard for high PD-L1 lung cancers, nearly
50% of patients do not respond, risking disease progression and worse survival. Therefore,
identifying these patients for alternative regimens is critical. To address this, we developed
a predictive risk model that uses pre-treatment CT scan peritumoral radiomic features and
clinical descriptors to accurately forecast pembrolizumab response. This model is a novel
interpretable tool that leverages imaging features and equips clinicians to tailor first-line
immunotherapy treatments, potentially improving the outcomes of patients with advanced
lung cancer.

Abstract: Background/Objectives: Pembrolizumab monotherapy is approved in Canada
for first-line treatment of advanced NSCLC with PD-L1 ≥ 50% and no EGFR/ALK aberra-
tions. However, approximately 55% of these patients do not respond to pembrolizumab,
underscoring the need for the early intervention of non-responders to optimize treatment
strategies. Distinguishing the 55% sub-cohort prior to treatment is a real-world dilemma.
Methods: In this retrospective study, we analyzed two patient cohorts treated with pem-
brolizumab monotherapy (training set: n = 97; test set: n = 17). The treatment response was
assessed using baseline and follow-up CT scans via RECIST 1.1 criteria. Results: A logistic
regression model, incorporating pre-treatment CT radiomic features of lung tumors and
clinical variables, achieved high predictive accuracy (AUC: 0.85 in training; 0.81 in testing,
95% CI: 0.63–0.99). Notably, radiomic features from the peritumoral region were found to
be independent predictors, complementing the standard CT evaluations and other clinical
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characteristics. Conclusions: This pragmatic model offers a valuable tool to guide first-line
treatment decisions in NSCLC patients with high PD-L1 expression and has the potential
to advance personalized oncology and improve timely disease management.

Keywords: non-small- cell lung cancer (NSCLC); immunotherapy; treatment response;
peritumoral; radiomics

1. Introduction
Lung cancer (LC) is the leading cause of cancer death in Canada and worldwide with

its 5-year survival among the lowest at 22% [1,2]. This is largely due to most diagnoses being
made at incurable late stages, compared to over 80% five-year survival if treated in stage
IA [3]. Non-small-cell lung cancers (NSCLCs) are the most common type. The first-line
treatment decisions of advanced NSCLC are reliant on genetic aberrations [4], while there
remains a large proportion of patients with no targetable mutations [5]. Clinical trials have
shown that immune checkpoint inhibitors (ICIs), either as a single agent or a combination
of immunotherapy (IO) and chemotherapy are treatment options for the patients without a
targetable mutation [6–9]. After the KN-024 trial, Health Canada approved pembrolizumab
monotherapy in the first-line setting for a special cohort of advanced NSCLC patients
with high PD-L1 expression (i.e., ≥50%), no epidermal growth factor receptor (EGFR), or
anaplastic lymphoma kinase (ALK) aberration [4]. In addition, KN-024’s 5-year survival
data show that the long-term survival was mainly driven by the responders.

Despite its benefit, the trial and clinical practice also suggested that 55% of this high PD-
L1 expression cohort do not respond to this simple single-agent pembrolizumab regimen,
hence, they likely require alternative therapy to achieve timely disease control. Therefore,
identifying non-responders prior to initiating the pembrolizumab is a critical task as this
would guide first-line treatment decisions in this PD-L1-high cohort. Currently, there are
no consensus biomarkers or clinicopathological features that we can employ to selecting
the 55% of patients that would benefit from alternative first-line treatment.

Radiomics is an emerging field of quantitative imaging. In contrast to traditional
visual interpretation, radiomics converts digital images into high-dimensional data to
represent features that are imperceptible to the human eye [10–12]. Radiomic features can
be combined with other patient data and mined with sophisticated bioinformatics tools
to develop models for diagnosis, prognosis, and biological endpoint prediction [12–18].
This combination of radiomic and other patient features is commonly referred to as a
“radiomic signature”. In lung cancer, radiomics has been shown to predict pathological
response, metastasis, and survival, and to correlate with histology, mutations [19–25], PD-
L1 expression [13,26], and immunotherapy response [17,27,28]. Trebeschi et al. found that
lesion-based CT radiomics could identify ICI treatment-responding metastatic NSCLCs [21].
Sun et al. reported that a combination of radiomic signatures and clinicopathological
features could predict the PD-L1 expression of NSCLC tumors [26]. Yolchuyeva et al.’s
recent study showed that pre-treatment CT radiomic features could predict both PD-L1
expression and progression-free survival in a Canadian cohort of NSCLC patients [13].

Recent studies that have investigated radiomic features drawn from the peritumoral
region—the area surrounding a lesion of interest—have shown these features to be promis-
ing predictors in several NSCLC-related prediction tasks [29–33]. These features have
gained momentum as potential biomarkers, as they potentially represent the immune mi-
croenvironment surrounding the tumor, and immunotherapy exerts its anti-tumor effects
by influencing both the tumor and its surrounding immune microenvironment [34]. Some
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studies have shown that some peritumoral features can correlate to inflammatory cells and
microvessels, which are known mechanisms of response outcomes [35–39]. The need for
additional validating studies investigating the potential of peritumoral radiomic feature
predictors has been called for [29]. Therefore, it is crucial to investigate the peritumoral
microenvironment’s features when investigating response to immunotherapy.

In our previous study, we demonstrated that clinical characteristics and baseline dis-
ease burden, as assessed by conventional CT findings, were significantly associated with
treatment response to pembrolizumab monotherapy [40]. Building on this foundation, this
pilot study aims to develop and validate a pragmatic machine learning (ML) model by
integrating intra- and peritumoral radiomic features. We hypothesize that these radiomic
features can enhance and complement the standard CT evaluations and clinical characteris-
tics, improving our prior clinical model’s predictions for response to pembrolizumab in a
high PD-L1 NSCLC patient cohort.

Since CT-based radiomics have high potential for clinical implementation, this pilot
work represents a step toward prospectively evaluating the medical utility of in-house
radiomics-based ML models in leveraging routine clinical CTs for personalized treatment
planning in daily Canadian clinical practice.

2. Materials and Methods
2.1. Patients Selection Criteria

A retrospective dataset from British Columbia Cancer was identified that satisfied
the following eligibility criteria: males and females from all ethnic groups and racial
backgrounds that received first-line single-agent pembrolizumab for stage IIIB or IV NSCLC
(without EGFR/ALK aberrations), and PD-L1 expression scores ≥ 50% (determined by
Standard-of-Care IHC assay at the same institution), referred between January 2017 and
31 May 2019. Patients were excluded if the following applied: they received concurrent
chemotherapy; additional or adjuvant ICIs/immunotherapy; received radiation and could
not evaluate treatment response to IO; had a known or suspected autoimmune disease, or
received long-term immunosuppressive therapy. Patients had a baseline CT ≤ 6 weeks
prior to initiating pembrolizumab and the first follow-up (FU) CT 9 to 12 weeks after
treatment started. These patients were separated into two datasets: a discovery training set
(Tr-set; n = 97, 56 F:41 M, 73 ± 6 yo, referred between January 2017 and December 2018)
and an external test set (X-set; n = 17, 9 F:8 M, 65 ± 10 yo, referred after January 2019), as
shown in Figure 1. Baseline patient demographics and clinical findings, such as age, sex,
Eastern Cooperative Oncology Group (ECOG) performance status [41], smoking status,
and pack-years, were collected and have been shown as discriminating features in our prior
work [40] (Table 1).

Table 1. Comparison of patient characteristics between the discovery training set and external
test datasets.

Baseline Patient and
Lesion Descriptor

Discovery Training Set
n = 97 Patients

External Test Set
n = 17 Patients

Progressive
Disease (PD)

n = 27

Disease
Control (DC)

n = 70

Progressive
Disease (PD)

n = 9

Disease
Control (DC)

n = 8

Age [median, Q1–Q3]
70 65–76 74 70–79 63 57–67 64 59–74

Sex (n, col%)
Female 14 51.9 42 60 6 66.7 3 37.5
Male 13 48.1 28 40 3 33.3 5 62.5
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Table 1. Cont.

Baseline Patient and
Lesion Descriptor

Discovery Training Set
n = 97 Patients

External Test Set
n = 17 Patients

Progressive
Disease (PD)

n = 27

Disease
Control (DC)

n = 70

Progressive
Disease (PD)

n = 9

Disease
Control (DC)

n = 8

Smoking status (n, col%)
Light and non-smoker 2 7.4 2 2.9 0 0 1 12.5
Smoker (current/ex) 24 88.9 65 92.9 9 100 7 87.5

Unknown 1 3.7 3 4.3 0 0 0 0

Pack years [median, Q1–Q3]
33 20–49 45 27–50 32 25–40 51 32–68

Cancer subtype (n, col%)
Non-SCC 22 81.5 58 82.9 4 44.4 6 75

SCC 5 18.5 8 11.4 5 55.6 2 25
Not specified 0 0 4 5.7 0 0 0 0

ECOG score [median, col%]
≤1 13 48.1 39 55.7 4 44.4 7 87.5
>1 12 44.4 22 31.4 5 55.6 1 12.5

Unknown 2 7.4 9 12.9 0 0 0 0

Metastatic sites (n, col%)
Lung metastasis 16 59.3 40 57.1 5 55.6 6 75

Lymph node 24 88.9 55 78.6 9 100 3 37.5
Adrenal 10 37 10 14.3 4 44.4 0 0

Liver 5 18.5 5 7.1 1 11.1 0 0
Bone 14 51.9 18 25.7 3 33.3 1 12.5
Brain 6 22.2 21 30 2 22.2 3 37.5
Other 14 51.9 30 42.9 3 33.3 0 0

Total No. of metastatic sites per patient [median, Q1–Q3]
3 2–4 3 2–3 3 3–5 2 1–3

Primary lung lesion size in mm [median, Q1–Q3]
39.9 24.5–51.5 36 24.2–49.2 47 28–50 55 25.5–84.5

2.2. CT Scans, Radiology Review, and Response Assessment

The baseline and first FU CT scans were acquired according to the standard body
scanning protocols at our institution as previously published [40]. All CT scans used a GE
Light Speed CT scanner (GE Healthcare, Milwaukee, WI, USA). Two board-certified qualified
radiologists reviewed all imaging and any disagreement between endpoint assessments was
resolved by a consensus meeting while blinded to the patient outcome data to assess treatment.

Baseline CT scan assessment included the measurement of the dominant lung tumor,
and the total number of organs/sites with metastasis, which was used to estimate the total
disease burden. Additional diagnostic modalities (e.g., PET, MRI, US, and biopsied tissue
results) were used when available to determine the distribution of metastatic disease.

The baseline and first FU CT were compared to assess the treatment response as per
the Response Evaluation Criteria in Solid Tumors criteria (RECIST v1.1) as we previously
described [40,42]. Progressive disease (PD) was defined when the sum diameters of all
measured lesions show no less than 20% increase. Complete Response (CR) refers to the
disappearance of all target lesions; and Partial Response (PR) means at least a 30% decrease
in the sum diameters of target lesions. Stable Disease (SD) consisted of insufficient growth
or shrinking to qualify for PD or PR. Patients in each set were categorized into two groups:
PD (Tr-set: N = 27, n = 31 lesions; X-set: N = 9, n = 9 lesions), or “disease control” (DC) if
they demonstrated CR, PR, or SD (Tr-set: N = 70, n = 88 lesions; X-set: N = 8, n = 10 lesions).
We have grouped patients in this way as our primary endpoint is the treatment response
(i.e., PD vs. DC, or non-responders vs. responders), and in this study we aim to identify PD
patients that could be given alternative first-line regimens. There are a total of 21 patients
across both sets that have more than one target lung lesion suitable for radiomics analysis.
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and response assessment—CT scans from these two cohorts are assessed by two expert radiologists 
to determine treatment response using RECIST v.1.1; (C) Baseline CT radiomics analysis—scan vol-
umes are then preprocessed by in-house segmentation pipeline that provides intra- and peritumoral 
segmentation masks in order to calculate shape, texture, and intensity radiomic features. (D) Model 
training and validation—the trends in the discovery dataset are used to determine the primary 

Figure 1. Radiomics extraction pipeline and experimental procedure. The workflow consists of the
following steps: (A) Patient selection criteria—we retrospectively identified two patient cohorts and
separated them into a discovery and external validation datasets; (B) CT scans, radiology review, and
response assessment—CT scans from these two cohorts are assessed by two expert radiologists to
determine treatment response using RECIST v.1.1; (C) Baseline CT radiomics analysis—scan volumes
are then preprocessed by in-house segmentation pipeline that provides intra- and peritumoral
segmentation masks in order to calculate shape, texture, and intensity radiomic features. (D) Model
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training and validation—the trends in the discovery dataset are used to determine the primary model
type and identify the combination of features that can predict immunotherapy response. A finalized
model was then selected and validated on the external set. NSCLC—Non-small-cell lung cancer,
RECIST—Response Evaluation Criteria in Solid Tumors; CT—computed tomography.

2.3. Baseline CT Radiomics Analysis
2.3.1. Image Acquisition and Lung Lesion Identification

All discrete lung lesions on the baseline CT were annotated by the same reviewing
radiologist using soft tissue windows. Then, an in-house Otsu-based segmentation pipeline
was developed to segment the entire lung parenchyma, lung tumors from CT volumes [43].
We first re-windowed and normalized the whole lung CT volumes to minimize any technical
differences between images acquired with different scanners and/or scanning parameters.
For each lesion, we utilized up to five axial slices to provide pseudo-volumetric data for
feature extraction. This includes the central axial slice, also known as. the slice with the largest
tumor area as identified by our radiologist team, and up to four adjacent axial view slices
(two cranial steps and two caudal steps from the axial slice with the largest lesion area).

2.3.2. D-ROI Segmentation

Three discrete masks were semi-automatically generated from each axial image:
“Core”—the lesion core, “Core Plus Edge”—the lesion core plus the edge transitionary bound-
ary pixels into the parenchyma, and “Ring”—an approximately 6 mm, or 8 px, peripheral
ring around the lesion that captures the surrounding lung tissue information, representing the
peritumoral region (Figure 1). The in-house segmentation program was constructed using
MATLAB (2019b, The MathWorks Inc., Natick, MA, U.S.A.) and was built specifically for
lung lesion segmentation [44,45]. The discovery training set for the machine learning model
included radiomic features drawn from each lesion axial CT image (N = 560 slices).

2.3.3. Radiomic Feature Extraction

From each mask (Core, Core Plus Edge, Ring), shape, texture, and intensity-based
quantitative radiomics were extracted with an in-house feature bank calculator [46]. Ra-
diomic features generated from “Ring” can be considered a 2D representation of the
established 3D “shell feature” [47].

Several steps were taken to ease the concerns of model generalizability on out-of-
distribution data that may be contained in the external test set: (i) categorical variables
(e.g., sex, smoking status, lung cancer staging) were one-hot encoded; (ii) each individual
numerical feature in the discovery training set was rescaled to a value between −1 and
1 based on the range of values for that feature, and then the learned scaling parameters
were applied to the external test set; (iii) a first pass filtering operation (Supplementary
Materials) was applied to remove weak, confounding, and redundant features before any
feature selection algorithm was applied to the discovery training set. Clinically determined
features were excluded from this filtering operation.

2.4. Model Training and Validation
2.4.1. Model Design

A 5-fold nested cross validation logistic regression (LR) was chosen as the multivariate
foundational prediction model construction method. This primary model paradigm was
chosen for several reasons: (i) the inclusion of categorical variables such as patient demo-
graphic variables are more easily handled by LR models during feature selection; (ii) it is a
white-box method in which the importance of the input variables are directly assessable
through their interpretable model beta coefficient values; (iii) the lower likelihood of overfit-
ting to a modestly sized and class-imbalanced dataset (LR models have much more limited
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degrees of freedom during training, reducing the probability of overfitting that many other
more complex methods with potentially much higher degrees of freedom have such as
support vector machines, deep learning approaches, etc.). A more comprehensive rationale
for choosing an LR as the primary prediction method can be found in the Supplemental
Materials (Section S2). Nested cross-validation folds were selected randomly such that
there was no patient or lesion cross-contamination between the training and test folds in
the discovery training set (Supplementary Materials).

2.4.2. Feature Selection

Several commonly used feature selection algorithms were used to identify discriminating
features to be used for training an LR-based classifier of PD vs. DC. These algorithms
include Sequential Forward (SF), minimum Redundancy Maximum Relevance (mRMR), and
ReliefF [48,49]. Radiomic feature selection for model performance was evaluated with and
without including the non-radiomic baseline features, providing a total of six possible radiomic
signatures to verify predictive ability. Non-radiomic baseline features include the following:
age, sex, smoking status, pack years, ECOG performance status, and the total number of
metastatic sites per patient on the baseline CT, which have been previously tested [40]. The
decision to use a maximum of five features is based on conventional guidance for statistical
rules of thumb, namely the “one-in-five rule”, for limiting the number of features in the
interest of avoiding overfitting [50]. In essence, the number of predictive features should
ideally be no greater than N/5, where N is the number of minority cases in the overall dataset
(e.g., for our study N = 27, thus 27/5 ≈ 5 possible discriminating features at maximum).

A threshold performance positive difference > 0.03 AUC for each additional feature to
be included was implemented (Supplementary Materials, Figure S1). This was decided to
limit the total number of features included during the radiomic signature building process,
which can lead to model overfitting to the discovery training set.

2.4.3. Model Selection

The foundational cross-validation LR method was applied to train a model using one
of the six selected radiomic feature signatures identified by the feature selection algorithms.
To identify the optimal model hyperparameters for each of the six potential LR models,
a 5-fold cross validated grid search of possible hyperparameter values was conducted
(Supplementary Materials, Tables S1–S4). To avoid any post hoc sequential evaluation
bias, these six LR models were compared based on their Receiver Operating Curve (ROC)
performance on the discovery training set only. Finally, the top performing radiomic feature
signature from these six models was used to train a final LR model using all data in the
discovery training set as the individual prediction risk model to calculate scores for the
external test set. For comparison, a separate radiomic feature signature, one that does not
include patient characteristics in the feature pool, was similarly trained on all the discovery
training set cases. This separate model will also be tested on the external test set to highlight
the added benefit of synergizing radiomic features with patient characteristics.

2.4.4. Statistical Analysis

The prediction performance of the top-performing LR model was estimated and
compared with ROC analysis, and area under the curve (AUC), sensitivity (SN), specificity
(SP), and the F1 score at optimal cutoff thresholds (Youden-J) [51] were reported. An
optimized model was selected based on the criteria of a patient-level maximized AUC
cross-fold validation paradigm on the discovery training set only. Model performance in
the external test set was determined with ROC analyses as well as reporting confidence
intervals for AUC. Confidence intervals on the external test set were calculated using the
Fast DeLong method [52,53].
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These six LR models were trained to evaluate if an individual axial slice from a lesion
could predict progression (i.e., a CT slice-level prediction). In order to determine if a
model could predict PD at the lesion level, we implemented a frequency thresholding
operation that prioritized high sensitivity to granular changes across all CT slices of the
lesion of interest (i.e., a lesion-level prediction). The operation counted the frequency of
slices predicting PD to then generate a lesion-level classification as either PD or DC (e.g., if
X/5 slices for a particular lesion were above the slice-level cutoff threshold, then the lesion
had a score of X, and depending on the lesion level threshold, the lesion was classified as PD
or DC). A visual example of this process is shown in Figure 2. The frequency thresholding
method is intended to be a conservative approach to maintain robust lesion-level and
patient-level classification of PD lesions. A lesion-level “risk of progression” prediction was
generated using an optimized model trained with a combination of radiomics and patient
characteristics, and it was considered to be synonymous to a patient-level risk prediction
(i.e., if any lesion predicted was predicted to be PD, the patient was predicted to be PD.
Both the patient- and lesion-level statistics were reported.
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a risk of progressive disease score for each CT slice of a lung lesion. Next, using the slice-level ROC
optimal threshold (e.g., X = 0.50 as shown on the example slice-level AUC), we assign a lesion-level
prediction score equal to the number of slice scores ≥ X. Using the lesion-level ROC optimal threshold
(e.g., Y = 2 slices), we assign a patient-level prediction score equal to the number of lesions with
scores ≥ Y. Using the patient-level ROC, we then determine the optimal number of lesions that are
positive to predict a patient with a likelihood of progressive disease (e.g., Z = 1 lesion). The frequency
scoring method will be applied to both the discovery and external test sets. However, prediction
score thresholds (i.e., X, Y, Z) at each level will be determined on the discovery training set during
ROC analysis, and then those thresholds are applied to the external test set.

Patients were then separated into two risk groups: “low” or “high risk of progression”
using the predicted “risk of progression” score as determined by the lesion-level LR
model’s predictions. The progression-free survival (PFS; time from starting pembrolizumab
treatment to the earliest CT date that showed disease progression) and overall survival (OS;
time from starting pembrolizumab to death or last FU scan date) between these two groups
was compared using a Mantel–Cox log-rank test [54].

All model construction and statistical analysis was performed with Python software
(v3.6.5, Anaconda Inc., Austin, TX, USA) on the PyCharm platform (2019.2.2 Community
Edition, JetBrains s.r.o., Prague, Czech Republic).

3. Results
3.1. Feature Selection

A number of commonly used feature selection algorithms were used to identify up-to five
highly discriminating features to be used for training a logistic regression-based classifier on this
PD vs. DC task. A first pass filtering operation (Supplementary Materials Section S4) removed
339 (out of 522 possible, Table S5) features. The remaining features selected for each feature
selection algorithm and their individual performances are shown in Table 2. Comparisons of
the six models shown in Table 2 revealed that model 5, a radiomics signature selected by SFS
from a feature bank that included both radiomic features and baseline CT characteristics, was
identified as the best model given its high AUC score and low cross-validation error bounds.

Table 2. Performance comparison between feature selection algorithms and the features selected.
Baseline characteristics includes age, sex, smoking status, pack years, and the number of metastatic
sites (full list can be found in Supplementary Materials).

Feature Selection
Algorithm

Including Baseline
Characteristics

ROC AUC
(Discovery Training Set)

Features Selected
(Up to 5)

1. mRMR * Yes 0.77 ± 0.05

1. No. of metastatic sites
2. GrayLevel6_RING
3. FFT2_RING
4. ECOG Score

2. mRMR * No 0.85 ± 0.10 1. MinAxis_RING
2. RadVarAngle_RING

1. ReliefF Yes 0.67 ± 0.09 1. Liver Lesion
2. V-Corre1ation_CORE

2. ReliefF No 0.70 ± 0.08 1. RadSD-Angle_CORE
2. RadKurtosis-Angle_CORE

3. SFS † Yes 0.85 ± 0.02

1. Pack Years
2. No. of metastatic sites
3. OD-CentroidDifference_RING
4. RadCentre_RING

4. SFS † No 0.87 ± 0.09

1. TotalVariance_CORE
2. MeanRadius_RING
3. ODEccentricity_RING
4. RadVarianceAngle_RING
5. RadCentre_RING

* mRMR = minimum Redundancy Maximum Relevance, † SFS = Sequential Forward Feature Selection.
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3.2. Performance of Multivariate Logisitic Regression Model Classifier

As the LR model was trained to predict PD vs. DC at each 2D axial image slice
of a lesion, an optimization operation was performed to find the ideal LR axial slice-
level cutoff threshold that maximized the patient-level AUC on the discovery training
set (Supplementary Materials). The final performance of the regression model indicated
excellent and satisfactory classification ability on both the discovery and external test sets
with an AUC at 0.85 ± 0.02 and 0.81 (CI 95%: 0.63–0.99), respectively (Figure 3). Operating
at the Youden-J (YJ) cutoff threshold of the discovery training set, the SN for the discovery
training set and external test set were 89.8% and 100.0%, respectively, while the SP was
80.0% and 62.5% (Table 3).
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Figure 3. ROC analysis of the 5-fold cross validated logistic regression (LR) model (black) and a
baseline CT (BCT) classification model (red) performance on the discovery and external test set when
trained on a combination of radiomic and baseline CT clinical/patient descriptor features. ROCs are
plotted at the patient-level using a frequency scoring method at lesion level with an optimal axial CT
image slice-level prediction threshold. The Youden-J threshold index is marked on the discovery set
with a triangle for both models. (a) LR model predictive ability on the discovery training set during
5-fold cross validation (AUC: 0.85 ± 0.02; Sensitivity: 0.898; Specificity: 0.734); (b) predictive ability of
the discovery-trained LR model on the patient-level external test set (AUC: 0.81; CI 95%: 0.63–0.99).

Table 3. Performance comparison of logistic regression models when trained with baseline clinical
characteristic features, radiomics, and a combination of both feature banks.

Discovery Training Patient Set
n = 97 Patients

External Patient Test Set
n = 17 Patients

Logistic Regression
Feature Type AUC SN SP F1 AUC SN SP F1

Baseline Clinical
Characteristics 0.64 ± 0.14 0.67 0.40 0.41 0.62

(CI 95%: 0.34–0.91) 0.89 0.25 0.70

CT Radiomic Features 0.87 ± 0.09 0.82 0.80 0.79 0.63
(CI 95%: 0.42–0.84) 0.89 0.38 0.73

Bassline Clinical Characteristics
+ CT Radiomic Features 0.85 ± 0.02 0.90 0.80 0.74 0.81

(CI 95%: 0.63–0.99) 1.00 0.63 0.75

3.3. Logistic Regression Model Prediction Calculator

The model separates individual axial lesions into risk-of-progression buckets by calcu-
lating a risk score from a radiomic signature. The formula for calculating the risk score is
shown in Equation (1).
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Risk of PD = [1 + exp (−0.282 − 0.509 × (Pack Years)
+0.999 × (No. of metastatic sites)
−0.816 × (OD-CentroidDifference_RING)

+1.148 × (RadCentre_ RING))]−1,

(1)

A visualization of SHAP values, which reflect the beta coefficients of the variables in
Equation (1), are included in the Supplementary Materials (Figures S4 and S5) to provide
additional context for feature importance in Equation (1).

After calculating the “Risk of PD” score for each axial slice from a lung lesion, those
particular slices were then classified into the “low” or “high risk of PD” depending on if
the slice’s score was above or below the YJ cutoff (YJ = 0.22) (Figure 3). Then, a risk-averse
frequency thresholding method (Section 2.4.4 or Figure 2) was deployed to determine
whether a lung lesion is to be classified as PD or DC. We identified that the optimal number
of PD slices required for a lesion and/or a patient to be classified as PD was “2”. In other
words, if two or more axial slices have a risk score above the slice-level YJ cutoff = 0.22,
the lesion is classified as PD (Figures S2, S3 in the Supplemental Materials). The optimal
number of lesions required to classify a patient as PD was at least “1” lesion according to
the discovery training set ROC (Figure 3).

When using this frequency thresholding method, 88.9% (24/27) of PD patients in
the discovery training set and 100% (9/9) of PD patients in the external test set were
accurately captured in the “high risk of progression” group by the model while operating
at the patient-level YJ cutoff, whereas 80.0% (56/70) and 62.5% (5/8) of DC patients in the
discovery and external test set, respectively, were captured into the “low risk of progression”
group as classified by the model (Table 4).

Table 4. Comparison between discovery and external test sets for the prediction task of classifying
patients with “risk of progression” scores calculated by a logistic regression model.

Discovery Training Set * External Test Set

Whole Patient-Level Reporting

- True Response
(PD vs. DC) PD (n = 27) DC (n = 70) PD (n = 9) DC (n = 8)

Predicted risk
of progression -

High risk of progression 24 14 9 3

Low risk of progression 3 56 0 5

SN: 0.89 SP: 0.80 SN: 1.00 SP: 0.63

Lesion-Level Reporting

- True Response
(PD vs. DC) PD (n = 31) DC (n = 88) PD (n = 9) DC (n = 10)

Predicted risk
of progression -

High risk of progression 29 36 9 4

Low risk of progression 2 52 0 6

SN: 0.94 SP: 0.59 SN: 1.00 SP: 0.60
* Discovery training set lesion and patient totals are summed from individual folds during 5-fold cross validation.
SN = Sensitivity, SP = Specificity.

3.4. Survival Analysis for Predicted Low vs. High Risk of Progression Groups

In the discovery training set, the PFS median follow-up time was 10 months (Q1–Q3:
4.4–16; 46 survivors) and the OS median follow-up time was 16.5 months (Q1–Q3: 3.5–29.6;
32 survivors). In the external test set, the PFS median follow-up time was 10.3 months
(Q1–Q3: 7.3–19.5; 5 survivors) and the OS median follow-up time was 7.1 months (Q1–Q3:
5.5–36.7; 4 survivors). With both sets of patients separated into “low” and “high risk of
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progression” groups as predicted by the model, Kaplan–Meier fitted survival functions
were fitted to showcase the separation between the survival curves for the discovery
training set (Figure 4a,c) and external test set (Figure 4b,d). The separation between the
survival curves, as indicated by the significance levels of the log-rank test, shows a clear
and substantial difference between the outcomes of the two predicted risk groups in both
datasets for PFS and OS.
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Figure 4. PFS and OS Kaplan–Meier plots comparing the predicted low to high risk of progression
classified groups as determined by a logistic regression model for the discovery training set and
external test sets of LC patients prior to treatment. Significance testing was calculated using the
Mantel–Cox log-rank test. (a) PFS survival curves for the discovery training set (p < 0.0001); (b) PFS
survival curves for the external test set (p < 0.01); (c) OS survival curves for the discovery training set
(p < 0.0001); (d) OS survival curves for the external test set (p < 0.01).

4. Discussion
In this pilot study, we developed an ML model integrating digital biomarkers—CT

radiomic features and clinically determined values—to predict which patients would
develop progressive disease (PD) to upfront pembrolizumab monotherapy vs. those
with disease control (DC). The radiomic signature consists of a combination of the texture
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features from the peritumoral region of interest, patient smoking history, and CT estimate of
tumor burden (Equation (1)). This work has advanced our prior research where only clinical
and conventional CT findings were used while in a similar prediction framework [40].

In this work, we addressed how to make a binary classification—PD vs. DC, or non-
responders vs. responders—in a group of otherwise almost identical NSCLC patients.
We chose this binary classification because treatment switching in the clinical practice
often relies on treatment response assessed radiographically at the FU CT, and it is the PD
patients that we aim to identify at baseline before treatment.

From the clinical practice perspective, misclassifying PD patients as low risk of pro-
gressive disease is more detrimental, as single-agent pembrolizumab may not be optimal
for non-responders that could benefit from alternative therapies for timelier disease control.
In some Canadian institutions, patients cannot cross to another regimen once started on
upfront pembrolizumab, emphasizing a clinical need for a high sensitivity to PD patients
as the most important and desirable function of a prediction model. Our final LR model
achieves a high sensitivity (Tr-set: 88.9%; X-set: 100%) which effectively identifies all PD pa-
tients, but with slightly less optimal specificity (Tr-set: 80.0%; X-set: 62.5%). Moreover, the
clear separation between the response groups for both PFS and OS (Figure 4a–d) validates
the model’s radiomic signature.

In this pilot study, we only performed CT radiomic feature analysis on the dominant
lung lesion. We chose to do so for the following reasons: (1) To keep the prediction tool
simple and therefore likely to be practical in future clinical setting. (2) A recent study
compared CT radiomics from multiple organs (e.g., lung, liver, adrenal) to predict response
to ICI, which showed that lung radiomics have superior performance than non-lung organs
in NSCLC [21]. (3) In our model, we have already incorporated a parameter that provides
the overall disease burden other than in lungs (i.e., total number of metastatic sites), hence,
we believe our model reflects the overall disease burden. Having more comprehensive
radiomic feature analysis of all involved organs/lesions might provide some additional
information and potentially add value to the individual risk of progression. However,
the complexity introduced by including all lesions from all involved organs, and in turn
more confounding radiomic features across multiple lesions, could weaken the predictive
power of this pilot study. The increased time and resource demands could also restrain the
potential usage of this model in the clinical setting. Finally, as this work has a relatively
small dataset, given the heterogeneity of the disease distribution/organ involvement
among individuals (as shown in Table 1), the training regime for an organ-specific PD risk
score would not likely be robust.

We implemented slice-by-slice 2D features rather than a common whole-lesion 3D
feature bank for each lesion because we intended to have a predictive granularity in order
to capture nuanced details throughout the lesion. For example, 3D features may only
provide a single value assigned to a lesion describing say, textural density or entropy of
a lesion, while the 2D version of a feature can potentially capture lesion characteristics
by “scanning” slice by slice through a lesion. Therefore, 2D features can offer additional
statistical insight by drawing attention to slice-by-slice texture changes throughout a lesion
of interest. As there were only 18% of patients (21/114) across both datasets with more
than one lung lesion available for radiomic feature analysis, that allowed us to compare
the model prediction performance between the lesion level and patient levels. Our results
suggest similar results between the two levels of hierarchical prediction methods (Table 4,
Figure S2). This would support a potential future prediction optimization study where one
uses a single dominant lung lesion to perform radiomic analysis for response prediction.

Several recent studies have found CT radiomics to be excellent predictors of varied
endpoints related to immunotherapy treatment [14,15,21]. While acknowledging the signif-
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icance of these studies, we are cognizant that many ML radiomics approaches do not tend
to generalize well despite foundationally strong methodologies and statistical calibration
efforts [28]. Moreover, each of these impressive studies tend to perhaps only answer the
specific clinical question asked of their study; a clinical question that differs slightly to
our own. Trebeschi et al. conducted a study where nearly all (99.2%) NSCLC patients had
received previous treatment (e.g., chemotherapy, radiotherapy) and included no NSCLC
patients that were treated with pembrolizumab [21]. Dercle et al. and Schroeder et al.
both combined clinical characteristics and radiomic features to predict survival outcomes
(OS, and PFS ≤ 90 days, respectively) which is a different prediction endpoint from this
study [14,15]. Nevertheless, the tremendous works in this field have given us confidence
that we are on track to provide an in-house solution to a particular clinical question in our
practice: How to identify non-responders in a cohort of NSCLC patients with high PD-L1
expression prior to initiating the first-line pembrolizumab monotherapy?

Our results suggested that two discriminating peritumoral features predicted well
when paired with clinical characteristics. The two geometric density metric features, the op-
tical density centroid difference (OD-centroid difference) and the radial center (RadCentre),
are statistical representations that describe the geometric density from an approximately
6 mm, or 8 pixel, extended “Ring” of tissue surrounding the lesion of interest (Figure 1).
Several studies have shown peritumoral features to be good predictors of clinical outcomes
in IO-treated NSCLC [31]. Li et al. found that a combination of intra- and peritumoral
features could differentiate hyper-progressive disease and pseudo-progression [55]. Tunali
et al. investigated the combination of peritumoral and clinical feature combinations that
could predict rapid progression (i.e., time to progression (TTP) < 2 months) [56]. Wu et al.
found that using a peritumoral and clinical feature nomogram, they could predict durable
clinical benefit in a broad range of NSCLC (stage 1B-IV) [57]. Our findings reaffirm and
support other peritumoral feature studies’ conclusions, and to our knowledge, our study is
one of the few studies using CT radiomics from peritumoral features to predict the response
to upfront pembrolizumab monotherapy in a Canadian cohort.

Interestingly, intratumoral radiomic signatures (i.e., features from the “Core” or “Core
Plus Edge” segmentations) were not sufficiently predictive on the external test set versus
the final model (Table 3). This is likely due to the strict, conservative approach we took to
limit the maximum number of features to avoid model overfitting. While similarly, Huang
et al. also concluded that peritumoral features made up a majority of the predictive features
in their treatment response study to neoadjuvant immunotherapy [58]. Nevertheless, there
remains a need for further investigation in these peritumoral radiomics features and their
biological link to the treatment response [36–39].

There has been a concerted push amongst digital biomarkers researchers to ascertain
a biological correlation between radiomics and established biological underpinnings of
disease characteristics or pathology [19,21,59]. However, no paired immunohistochemistry
slides from the described target lung lesions peritumoral region were available for this
study to confirm a potential biological underpinning of these peritumoral features. Hence,
for this study, we specifically and purposely have avoided drawing premature, post hoc
conclusions over the exact interpretable biological nature of the lesion or parenchymal
tissue characteristics that are captured by the selected peritumoral radiomic features.

Compared to the AI/ML radiomics research field, our study is not novel in terms of
methodology. Rather, we prefer to think the uniqueness of our work is to explore an ML-
radiomics approach in a critical unsolved real-world clinical question using a relatively new
concept of including peritumoral radiomic features which can represent the composition and
status of the immune microenvironment in an interpretable model. Our final goal is clinical
translation, and we have made efforts to take a pragmatic approach, such as using an intuitive
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logistic regression model, including a small number variables in the prediction model given
our modest dataset size, applying radiomics analysis to only lung lesions and incorporating
the clinical features that have been previously tested valid to distinguish PD vs. DC [40]. We
believe these considerations are essential to increase the medical utility of our model and
facilitate research clinical translation in other Canadian institutions under the same practice
guidelines and help precision oncology in a special cohort of NSCLC patients.

Our study has several limitations. First, this is a retrospective study with a small
sample size and class imbalance. Given these limiting constraints, more complex models
such as XGBoost, RandomForests, or Support Vector Machines (SVMs), which have shown
empirically better performances, were not felt to be suitable as a primary model for this
study. Second, most patients are Caucasian from a single-center treatment institution.
Although this contributes to a relative homogeneity of the patient dataset characteristics,
the question of generalizability and concern of racial demographics for training ML models
is a commonly encountered problem for lung datasets collected in North American institu-
tions [60]. Given the small sample size, we are unable to address the racial demographics
in this study, hence this might limit its generalization in patients with different racial de-
mographics. However, since this prediction model is intended for use in Canadian centers
where the research questions arise, this racial demographic issue perhaps will not affect the
potential clinical utility of the model in many Canadian settings. Another limitation arises
from implementing a 2D feature bank as opposed to a more commonly used 3D feature
bank. However, we believe that by applying our frequency scoring method (Figure 2),
we have transitioned the prediction from individual slices represented by 2D features to
whole lesion/patient classification with additional granular detail to lesion morphology,
and therefore additional predictive ability.

To ensure more robust conclusions, future studies will strive to include data from
multiple institutions with a diverse ethnic representation, as well as the integration of
quantitative pathological features of the tumor and tumor microenvironment with the
radiomic features to further enhance the accuracy of the prediction tool. Also, with more
data, it becomes possible to explore additional and more complex model types, such as
Random Forests or potentially deep learning architectures. The latter is an especially
attractive avenue of potential research as carefully deployed fully automated workflow can
further optimize the timeliness of clinical decision making.

5. Conclusions
Our findings demonstrate predictive associations between clinical features, pre-

treatment peritumoral CT radiomics features of lung tumors, and immunotherapy response,
by distinguishing responders from non-responders, in a cohort of advanced NSCLC pa-
tients that received single-agent upfront pembrolizumab.

Peritumoral radiomic features have been shown to have a biological link to the re-
sponse to immunotherapy. These features require further assessment and validation as a
viable method that may complement and augment conventional CT scan assessment for
response prediction.

This pilot study provides a pragmatic in-house ML model that could potentially be
used to predict patient response to treatment with binary classification (i.e., PD vs. DC) to
facilitate the clinical treatment decision making processes in Canadian institutions under
the same high PD-L1 practice guidelines. Building on the results from this pilot study and
considering the wide availability of routine clinical CT scans for lung cancer patients under-
going immunotherapy, we aim to further this research by designing clinically applicable
computer-assisted prediction models to elucidate medical utility, facilitate research clinical
translation, and support precision oncology.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers17010058/s1, Figure S1: Overall area under the ROC
curve (AUC) performance across five-fold cross validation during the Sequential Forward Feature
(SFS) selection process on the discovery set; Figure S2: ROC analysis of the 5-fold cross validated
Logistic Regression (LR) model on discovery and external test set when trained on a combination of
radiomic and baseline CT clinical/patient descriptor features; Figure S3: ROC analysis of the 5-fold
cross validated Logistic Regression (LR) model on the discovery and external test set when trained
on a combination of radiomic and baseline CT clinical/patient descriptor features; Figure S4: A
visualization of SHAP values on the Discovery set for each individual slice (N = 560 slices); Figure S5:
A visualization of SHAP values on the External test set for each individual slice (N = 94 slices);
Table S1: Hyperparameter grid for logistic regression; Table S2: Hyperparameter grid for mRMR;
Table S3: Hyperparameter grid for ReliefF; Table S4: Hyperparameter grid for Sequential Feature
Selection; Table S5: Radiomic feature list with beta coefficient associated p-values determined by
individually fitting single logit logistic regressions to patient outcome labels (Progressive Disease vs.
Disease Control). References [40,46,61–64] are cited in the Supplementary Materials.
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Nomenclature and Acronyms

ALK Anaplastic Lymphoma Kinase
AUC Area Under the Curve
CI Confidence Intervals
CT Computed Tomography
DC Disease Control
DL Deep Learning
ECOG Eastern Cooperative Oncology Group
EGFR Epidermal Growth Factor Receptor
FU Follow Up
ICI Immune Checkpoint Inhibitor
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IHC Immunohistochemistry
IO Immunotherapy
LC Lung Cancer
LR Logistic Regression
ML Machine Learning
MRI Magnetic Resonance Imaging
mRMR minimum Redundancy Maximum Relevance
NSCLC Non-Small-Cell Lung Cancer
OD Optical Density
OS Overall Survival
PD Progressive Disease
PD-L1 Programmed Death Ligand-1
PET Positron Emission Tomography
PFS Progression Free Survival
PR Partial Response
RECIST Response Evaluation Criteria in Solid Tumors
ROC Receiver Operating Characteristic
SD Stable Disease
SFS Sequential Forward Selection
SN Sensitivity
SOC Standard of Care
SP Specificity
Tr-set Discovery Training Set
US Ultrasound
X-set External Test Set
YJ Youden-J
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